A new writeup on Int-to-type idiom has been posted on More C++ Idioms wikibook. It is used to achieve static dispatching based on constant integral values. I'll finish the writeup of the idiom here with special attention to how int-to-type idiom can lead to infinite series of type instantiations and why. The idiomatic form of the Int-to-type idiom is given below.
template <int I>
struct Int2Type
{
enum { value = I };
typedef Int2Type<I> type;
typedef Int2Type<I+1> next;
};
The type typedef defined inside the template is the type itself. I.e, Int2Type<10>::type is same as Int2Type<10>. The next typedef gives the following type in order. However, compiler is not required to instantiate the next type unless and until two things happen: (1) an instance of the type is created or (2) an associated type is accessed at compile-time. For example, Int2Type<10> will be instantiated if one the following two things are written.
Int2Type<10> a; // a varia…
template <int I>
struct Int2Type
{
enum { value = I };
typedef Int2Type<I> type;
typedef Int2Type<I+1> next;
};
The type typedef defined inside the template is the type itself. I.e, Int2Type<10>::type is same as Int2Type<10>. The next typedef gives the following type in order. However, compiler is not required to instantiate the next type unless and until two things happen: (1) an instance of the type is created or (2) an associated type is accessed at compile-time. For example, Int2Type<10> will be instantiated if one the following two things are written.
Int2Type<10> a; // a varia…